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SHEAR INSTABILITY IN STRATIFIED VIS~OELASTI~ AND WAS-LIQUID MEDIA” 

I.SH. AKHATOV 

A number of problems on the development of surface and internal 
waves in fluids with complex rheophysical properties is solved in a 
linear formulation. The influence of the viscoelastic properties Of 
non-Newtonian fluids and the dissipation properties and local 
deformation inertia of fluids with gas bubbles on the stability of such 
waves is investigated. 

The question of the stability of internal waves in a two-layered 
incompressible viscous fluid with a tangential velocity discontinuity 
has been studied in detail /l, 2/. It is known that a Kelvin-Helmholtz 
instability occurs in the short-wave domain while there is no 
instability in the long-wave domain because of the stabilizing action Of 
stratification. However, waves with negative energies exist in this 
domain that become unstable in the presence of viscous diSSipatiOn. In 

this connection, investigation of the stability of waves with negative 
energies in two-layered non-Newtonian fluids characterized by more 
complex rheological behaviour is of interest. 

1. Waves on the szrfwe of a viscoeZastic fluids. A viscoelastic incompressible 

medium of infinite depth (a~ <y(O) is considered in an x> y Cartesian system of coordi- 
nates. The free fall acceleration 6 = con& is directed along the negative y semi-axis. 

The generalized rheological law 
RTij = Qeij’ (1.~) 

relating the components of the deviator part of the stress tensor Ttt to the components of 
the strain rate tensor e-it- is used. Here R and Q are differential operators based on 
the Oldroyd derivative with respect to time /31 which can be written in the linear approxi- 
mation in the form 

R = 1 -I- Wat, Q = 2p (1 3_ ?d/iS’t) (1.2) 

where u is the coefficient of dynamic viscosity and 0 and h are the relaxation times. It 
can be shownthat the system of linearized equations of the two-dimensional non-stationary 
motion of a viscoelastic fluid has the following form when relationships (1.1) and (1.2) are 
used: 

R @au/at + aptax) = +Qh, R(paupt + apjay) = (1.3) 

+ Qlu -pg, au/ax + du/ay = 0 

The equation of the fluid surface y = q(x, t) is related to the velocity field by the 
standard relationship 

agat- u =o, y =o (W 
The dynamic boundary conditions that the tangential and normal stress components equal 

zero on the fluid surface yield, in the linear approximation, 

p (aaiay + a[s'a,r) =: 0. RI1 - (ih a!) = n, y = 0 (1.5) 

The solution of Problem (1.2)-(1.5) can be represented in the form /4/ 

21 = its - hpag. li = I.O f ~9k3~, p = pO 
UP = is+BE (6 x, y). co = kBE (t, z, y) 

PO = toPBE (t> ~1‘3 y) - pgy; E (t, .x, y) = 
exp (- tot + ikx-f-ky) 

(1.6) 

where uo, vo, p. 
h IO,%= O),@ 

is the solution of this problem for an ideal incompressible fluid and (~~0, 
is a function of x, y, t. Substitution of these expressions into the first 
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two equations of ( 
equation 

whose solution has 

-3) when taking account of the equalities Au, =O, Au, =O results in the 

ZpR&v’at = QAll, 

the form 

II, = c exp (---id + ikx jr Ey) 

18 I .l$ _ _%.#m , r(w)=l-id, q(o)=l-ioh, r,_!!z_ 
P 

We consequently obtain 

u = (ikB exp (kg) - EC erp (Ey)) exp (-iwt+ iks) 

v = (kB exp (ky) i- ikC exp fly)) esp (---ial + i&z), p = pO 

(1.7) 

Further utilization of the boundary Conditions (1.4) and (1.5) results in the dispersion 
relation 

~9 - 0,,2 + 4ivk20q (to):r(w) + 4v%"(li'k - l)(q(o)/r (o))* =T 0 (2.8) 

where w02 (k) = gk is the dispersion relation for waves on the surface of an ideal incom- 
pressible fluid. In the case of small viscosities (%@/o<1) it can be assumed that the 
motion differs little from the potential flow of an ideal fluid so that CO = o,, I_ i6, 6(( oO. 

The solution of (1.8) in the linear approximation in 6 has the form 

6 = - 2vka [1 + gkhe + i l/s (0 - h)]/(l + gke”) 

It is seen that the presence of viscoelastic properties in the fluid results in a change 
in the dispersion and dissipation characteristics. Thus, we have for a phase velocity c 
and a damping decrement - Re6 

c = fgjkjl + 2vk~(0 - h)/(l $ g&P)] 

-Re 6 = 2vk2 (1 + gk~0)~(~ -I- gk0*) 

The equality o02 = gk-t- ok3/p must be used to take account of the influence of 
surface tension (I in (1.8). 

the 

Two incompressible fluids 
of different densities ae examined, where the lower one (y(O) is viscoelastic, has a 
high density and is fixed, while the upper one (y>(l) is ideal and moves with velocity U. 
The parameters referring to the upper and lower fluids are marked with the subscripts 1 and 
2, respectively. 

The kinematic and dynamic conditions on the interfacial boundary of the liquids result 
in the equations 

(2.1) 

Relations (1.7) obtained in Sect.1 are used as solutions of the equations of the dynamics 
of viscoelastic fluids (1.3). The solution for the upper (ideal) fluid can be represented 
in the form 

a1 = U + ikAII(t, x, -y), v1 = -kAE (t, x, -y) 

PI = -&A (co - Uk)E (t, 5, -Y) - WY (2.2) 

Substitution of relations (1.7) and (2.2) into (2.1) yields the following dispersion 
relation: 

s (0 - Uk12 + d - (1 - s)gk + 4ivk%Iq (w)/r (w) -t 
4vaka (Ilk - I)(q (o)ir (co))* = 0, s = p&, (2.3) 

For vka/o< 1 (2.3) can be reduced to a dispersion relation for internal waves in a 
laminar waves in a laminar ideal fluid &(o,k) =O with a correction due to the rheological 
constants V, h, e 

Z, (0, k) = -iF (k, 8, h, 0, kf 

2, = s (w - Uk)z + a2 - (1 - s)gk 

(2.4) 



F = 4vk2ofl + o?Le + iw (0 - h)l/(l + o2W 

In a laminar ideal fluid described by the dispersion equation 
of Kelvin-Helmholtz instability (k>k,=(1-a2)g&5ua)) bounds the 

domain located between the critical points k, = (i- s)g/(sUa)(w 7 O).. 

Z,(o, k) = 0, the domain 
negative-energy wave 
and k, (doh3k = 00) /I, 

2/ (Fig.1). Indeed, the average wave energy density is given in tne linear approximation 
the relationship 
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E = oaVZ,/& = 2wa2(1 + s)(o - Us (1 + s)-‘k) 

from which it follows that the branch A,A, of the dispersion curve lying below the line 
OE (o = Us (2 + s)-‘k), corresponds to waves with negative energy. It is well-known that 

the lower medium is a Newtonian viscous fluid, then the Kelvin-Helmholtz instability 
weakened while an instability /l, 2f (dissipative instability) occurs in the whole domain 
negative-energy waves. 

A small correction i& to the frequency (o=woj-i6): 
is found from (2.4) 

Re co 

I- 

Fig.1 

(j = _ E (o _ $&k)-‘(I + c&P)-‘11 + 02h8 + io (6 - h)] 

if 
is 
of 

It is hence seen that if 0 = 0, the growth increment 
Re 6 of the negative-energy waves is the same as in the 
case of a Newtonian viscous fluid. If h(@#O, then the 
growth increment is lower than for a Newtonian fluid while if 

h>G#O, it is above. Therefore, the presence of visco- 
elastic properties in a fluid can result in both 
magnification and attenuation of the dissipative instability, 
depending on the magnitudes of the relaxation times. 

3. h&es on a fluid sur$xce with gas bubbles. Gas-liquid media are fluids with 
a non-holonomic equation of state p =j(p,$,c) /5, 6/ (the dot denotes the Lagrange time 
derivative). In the linear approximation the pressure deviation p' and the density deviation 
p' from their initial equilibrium values p0 and p0 are connected by the relationship 

p’ = c&’ + ap” + BP" 

Co2 = YPO 4P 
po'po' a=-, P=& 

(3.1) 

Here y is the polytropic gas index in the bubbles, p0 and a are the volume 
concentration and the radius of the bubbles, and u is the effective viscosity. Fine-scale 
phyiscochemical processes occurring in gas-liquid media and their influence on the 
dissipative properties (the parameter a) and the dispersion (the parameter P) of the mixture 
are analysed in detail in /6/. 

In the initial unperturbed state the liquid density distribution with depth is 
determined by the formula 

no(y) = PO (0) exp (-_gdco2f 

consequently, the fluid can be considered homogeneous(p, = const)with good accuracy for 
wavelengths L satisfying the condition gLJc,2< 1. 

After linearization the momenta continuity equations have the form 

@'/8t-+p,divv' = 0, p,av'/& + Cp’-pp’g I 0 (3.2) 

The last component in the second equation in (3.2) can be neglected by taking into 
account that the density perturbation is negligibly small compared with the pressure gradient 
for gLic,2 <( 1 . Then, taking (3.1) into account we obtain an equation from (3.2) for the 
potential flow (v' = Vv) 

(3.3) 

which the travelling wave 

satisfies. 

cp = A exp (--tot + ikr + iq (a)~) 

P(a) = -k2 + 02(co2 - iao - @@)-l 
(3.4) 

Utilization of standard boundary conditions for an ideal fluid results in the dispersion 
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relation 
04 + gzq* (0) = 0 (3.5) 

For u = 0, p = 0, Eq.(3.5) reduces to the equation 

z0 (c00,k) = 004 - gZ(k2 - oo%0-z) = 0 

whose solution possesses the following asymptotic properties: 

o*=c,~, k-0; O@==T/& k-+m 

For small a and p, dispersion relation (3.5) can be represented in the form 

2, (0, k) = -iagWc,-4 - ~gWc,-* 

Hence, for a small correction is to the frequency the expression 

S= - ag%$ + ij3g*cL@ 
2 (2c0'00'+ g%$) 

is obtained. 
It is seen that waves on the surface of a fluid with gas bubbles damp out with a damping 

decrement that tends to zero according to the law - Re& = akV2, as k-t0 and tends to 
a finite value - Re& = ug~l(~c*~) as k-+oo 

1. vaves on the interfacia2 b-g of abet and ideal ftuids. 
An ideal incompressible fluid of infinite depth (Y(O) is considered above which 

(Y> 0) is a fluid with gas bubbles moving horizontally at the velocity U. The parameters 
referring to the upper and lower fluids are marked with the subscripts 1 and 2, respectively. 
The equation for the perturbation potential in the bubbly fluid m, is obtained from (3.3) 
by the operational replacement al0t-+a/at + Us/ax and its solution is obtained from 
(3.4) by the replacement o-+ (0 - Uk) 
boundary conditions 

in the expression for g(w). Utilization of the 

(a/at f Udlax)r) - aq,fay = 0, aqiat - aq,iay = 0 

plgrl f pt (a/at ‘r uaiax)~p, = p2gq + P2bPaq 

and the solutions 'pz of the equations of ideal incompressible fluid motion results in a 
dispersion relation 

o2 + ik$-' (0) s (o - Uk)? - (1 - s)gk = 0 

that can be reduced to the dispersion relation for internal waves in a laminar ideal fluid 
Z,(o, k) = 0 in th," linear approximation (see (2.4)) with a correction due to the 
compressibility 
gas-liquid medium (" )' 

and the dissipative property (a) and dispersion (/3) of the 

An expression is obtained from (4.1) for the wave growth 
increment 

from which it follows that in a domain bounded by the line o = Uk from above and the line 
o = s (1 f s)-‘Uk from below, a dissipative wave instability (shaded in Fig.2) should occur 
irrespective of the magnitude of the parameter a. 

The author is grateful to A.Kh. Mirzadzhanzade for formulating the problem and also to 
M.Ml Khasanov for useful discussions. 
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A VARIATIONAL PRINCIPLE FOR NON-LINEAR CONCENTRATED WAVES* 

S.A. VAKULENKO 

Asymptotic solutions describing domain walls and wave beans in a 
non-linear continuous medium are considered. The shape of the walls or 
beams can be derived from a simple variational principle - a 
generalization of Fermat's principle in linear geometrical optics to 
the non-linear situation. 

I. Statement of the probtenr. We consider asymptotic solutions for certain classes 
of non-linear equations. The following equations will be studied: 

Au + &Ju'(u,x)= 0, u(x): Rm-+R, XER" (i-1) 
and also 

Au-foe~,;u,t(IulO,x)~=O, u(x)~C, XER" w?I 

where 0>1, m> 1, k =2,3. 
Eq.11.1) has applications (when m = 2) in two-dimensional problems of elasticity 

theory for liquid crystals (these applications will be considered in Sect.4). Eq.(1.2) is 
used to describe the propagation of radiation in a non-linear medium /I., 2/. In that case u 
is the complex amplitude of the field and a,' is the non-linear refractive index. 

Special asymptotic solutions (as w-+00) of Eqs.(l.l), (1.21 were considered in /3/. 
In this paper, for brevity, we shall use the term "concentrated solution" (for a rigorous 
definition see 131). 

The following is an example of a concentrated solution. 
u in (1.1). Then the equation has an asymptotic solution 

Put m = I, a>O, Vu' = a*(z)sin 

u = 4 arctg (exp (001 (xO)(z - x0))+ 0 (o-l)= u. (x) + 0 (o-1) (l-3) 

The function uil (2) varies essentially in a narrow region, of size 
point x0, but when 12--X! I>@-' 

O(oel), near the 
the function 

amount from 0 or 2n. 
u@(x) differs by an exponentially small 

The solution is concentrated near ,z*. When m>* such solutons of 
Eq.(l.l) are concentrated near hypersurfaces S in Rm+ 
centrate near curves 1. 

, similar solutions of Eq.fl.2) con- 
Solutions of Eq.tl.1) are interpreted as domain walls, and those of 


